Firm Dispersion and Business Cycles: Estimating Aggregate Shocks using Panel Data

Jerome Williams Simon Mongey
NYU NYU

January 18, 2017
Introduction

- Recent focus in business cycle literature on learning from micro-data.
- In particular, firm distribution becomes more “spread out” in recessions.
 - Std. dev. of sales growth across firms is *countercyclical*.

Aggregate Output is Real GDP, taken from BEA National Income and Product Accounts, logged and detrended using a one-sided Hodrick-Prescott filter. *Std Dev of sales growth* is the cross-sectional standard deviation of the percentage change in quarterly sales across firms, using listed US firms in Compustat, with a cubic trend removed.
Motivation and approach

Question: is increased dispersion a cause or an effect of cycle?

Our approach:

- Model of heterogeneous firms with aggregate shocks
 - Standard macro shocks
 - productivity
 - discount factor
 - labor supply
 - Uncertainty shock
 - direct shock to firm dispersion
- Estimate the model using
 - aggregate time series
 - output, consumption, hours worked
 - time series of firm dispersion
 - std. dev. sales growth over time, constructed from panel data
- Obtain estimates for
 - contribution of uncertainty shock to aggregates (cause)
 - contribution of macro shocks to dispersion (effect)
Results preview

Q: Is firm dispersion a cause or effect of the business cycle?
A: Neither!

Estimation results show that
- almost all fluctuation in aggregates is due to macro shocks
- almost all fluctuation in dispersion is due to uncertainty shock

Uncertainty shocks can generate recessions but don’t.
DSGE overview

Model

\[u(C_t) = X_t^\beta R_t u(C_{t+1}) \]
\[-X_t^\psi v(N_t) = u(C_t) \]
\[Y_t = X_t^Z N_t^\nu K_t^{1-\nu} \]
\[Y_t = C_t + (K_{t+1} - (1 - \delta)K_t) \]

\[\theta = (u, \nu, \beta, \nu, \delta) \]

⇒ Impulse responses

⇒ Likelihood

\[P(\text{data}|\theta) \]

⇒ Shock decomposition
Model: environment

- **Discrete time, infinite horizon.**
- **Household**
 - supplies labor N_t^s at competitive wage W_t
 - consumes consumption good C_t
 - receives dividends Π_t from firms.
- **Firms** Continuum of firms, each with state $(k_{it}, z_{it}, \xi_{it})$
 - hire labor n_{it} at competitive wage W_t,
 - produce using labor n_{it} and pre-installed capital stock k_{it}
 - decreasing returns to scale production function
 \[
 y_{it} = X_t^Z z_{it} \left(n_{it}^{\nu} k_{it}^{1-\nu} \right)^{\kappa}, \quad \kappa < 1
 \]
 - choose whether to adjust capital or not
 - pay $\xi_{it} \sim F(\xi)$ to adjust
 - if adjusting, choose next period’s capital stock $k_{i,t+1}$
 - pay out dividends π_{it}
Firm problem (adjust or not)

• The firm’s state is \((k, z, \xi; S)\).
• Let \(v(k, z, \xi; S)\) be the discounted present value of the firm.
• Each period, the firm chooses whether to adjust or not:

\[
v(k, z, \xi; S) = \max \left\{ -\xi W(S) + v^{\text{adj}}(k, z; S), v^{\text{stay}}(k, z; S) \right\}
\]

• Gives threshold rule \(\xi^*(k, z; S)\).
Firm problem (continued)

Value of adjusting:

\[
\nu^{\text{adj}}(k, z; S) = \max_{d, k' \geq 0, n} \left[d + \mathbb{E}[M(S, S') \nu(k', z', \xi'; S')] \right]
\]

subject to

\[
d = X^\kappa z (n^\nu k^{1-\nu})^\kappa - W(S)n - (k' - (1 - \delta)k)
\]

\[
\log z' = \rho_z \log z + \varepsilon'_z, \quad \varepsilon'_z \sim \mathcal{N}
\left(-\frac{1}{2} \frac{(X^\sigma \sigma_z)^2}{1 + \rho_z}, (X^\sigma \sigma_z)^2 \right)
\]

\[
S' \sim \mathcal{H}(S, S')
\]

Value of not adjusting:

\[
\nu^{\text{stay}} \text{ same as } \nu^{\text{adj}} \text{ but } \frac{k' - (1 - \delta)k}{k} \in [-b, b]
\]
Household problem

Let \(W(S) \) be the household’s expected present discounted value:

\[
W(S) = \max_{C,N,A'} u(C - H) - X^\psi v(N) + \beta X^\beta E[W(S') | S] \\
C + Q(S) A' = W(S) N + (Q(S) + \Pi(S)) A
\]

Optimality conditions:

- stochastic discount factor

\[
M(S,S') = \beta X^\beta (S) \frac{u'(C(S') - H(S'))}{u'(C(S) - H(S))}
\]

- labor supply

\[
W(S) = X^\psi (S) \frac{v'(N(S))}{u'(C(S) - H(S))}
\]
Aggregate state

- The aggregate state is the distribution of firms and the aggregate shocks:
 \[S = \left(\mu(k, z, \xi), X^Z, X^\beta, X^\psi, X^\sigma \right) \]

 where the aggregate shocks are:
 - \(X^Z \), a shock to aggregate TFP,
 - \(X^\beta \), a shock to the household’s discount factor,
 - \(X^\psi \), a shock to the household disutility of labor,
 - \(X^\sigma \), an uncertainty shock.

- Aggregate shocks follow AR(1) processes
 - in logs for \((Z, \beta, \psi)\):
 \[\log X^j_{t+1} = \rho^j \log X^j_t + \sigma^j \epsilon_t, \quad \epsilon \sim \mathcal{N}(0, (\sigma^j)^2) \]
 - in levels for \(\sigma\):
 \[X^\sigma_{t+1} = \rho^\sigma X^\sigma_t + \sigma^\sigma \epsilon_t, \quad \epsilon \sim \mathcal{N}(0, (\sigma^\sigma)^2) \]
An equilibrium of this model consists of

- firms’ value function \(v(k, z, \xi; S) \),
- firms’ policy functions \(k'(k, z, \xi; S) \), \(n(k, z, \xi; S) \) and \(\xi^*(k, z; S) \),
- households’ policies \(C(S) \), \(N(S) \) and associated discount factor \(M(S, S') \),
- a wage \(W(S) \),
- a law of motion for the distribution of firms \(\Gamma(\mu, \mu'; S) \),

such that

1. the firms’ policies are optimal,
2. the households’ policies are optimal,
3. the labor market clears,
 \[
 N(S) = \int n(k, z, \xi; S) \, d\mu(k, z, \xi; S)
 \]
4. the law of motion of the distribution is consistent with the firm’s policies.
Solution method

Solve numerically using a computer. 4 steps:

1. Solve for “steady state”, i.e. eqbm without aggregate shocks.
 - A fixed-point problem in the wage W.

2. Construct discrete approximations of eqbm objects and conditions.

3. Take first-order Taylor approximation of discretized eqbm conditions.
 - Expand around steady state from Step 1.

4. Solve resulting first-order difference equation using linear algebra.
Impulse response functions

TFP

Discount

Labor

SD sales growth
Uncertainty shock

Output, Consumption, Labor

Investment, Capital, Fraction of firms adjusting

Firm capital choice

Steady state, 1 period after uncertainty shock
Estimation

1. Fix some parameters externally:

\[\theta_1 = (\beta, \sigma, \eta, \delta, \nu) \]

2. Estimate steady-state parameters using simulated method of moments:

\[\theta_2 = (\bar{\xi}, \rho_z, \sigma_z, \kappa) \]

- to match moments of long-run firm distribution (Compustat)

3. Estimate shock process parameters using Bayesian methods:

\[\theta_3 = \{ \rho^j, \sigma^j \} _{j \in \{Z, \psi, \beta, \sigma\}} \]

using as observable time series
- Aggregate output, consumption and hours worked (NIPA)
- Cross-sectional time series of SD sales growth (Compustat)
Data: cross-sectional

- **Compustat**: quarterly accounting data for publicly listed firms.
- **Sample selection**
 - US firms, 1989q1 to 2014q4
 - We drop from the sample
 - quarters in which a firm is involved in M&A
 - financial firms and utilities
 - each firm’s first and last quarter
 - Resulting sample: 360,591 firm-quarter observations
- **Variable definitions**

\[
\text{sales growth}_{it} = \frac{\text{sales}_{it} - \text{sales}_{i,t-1}}{\frac{1}{2} (\text{sales}_{it} + \text{sales}_{i,t-1})}, \quad \text{investment rate}_{it} = \frac{\text{ppe}_{it} - \text{ppe}_{i,t-1}}{\frac{1}{2} (\text{ppe}_{it} + \text{ppe}_{i,t-1})}
\]

\[
\text{inaction rate}_t = \frac{1}{N_t} \sum_{i=1}^{N_t} 1\{|\text{investment rate}_{it}| > 0.01\}
\]
Data: time series

- **Aggregate time series**
 - Source: National Income and Product Accounts (BEA)
 - Variables
 - Output Y_t: Real Gross Domestic Product
 - Consumption C_t: Real Personal Consumption Expenditures
 - Labor N_t: Index of Aggregate Weekly Hours
 - Logged and detrended using a one-sided HP-filter.

- **Cross-sectional time series:**
 - SD sales growth from Compustat.
 - Detrended using cubic time trend.
Estimation (1)

(1) Fix some parameters externally:

\[u(C - H) = \frac{(C - H)^{1-\sigma}}{1-\sigma}, \quad v(N) = \frac{N^{1+\eta}}{1+\eta} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount factor</td>
<td>(\beta)</td>
<td>0.99</td>
</tr>
<tr>
<td>Curvature of utility function</td>
<td>(\sigma)</td>
<td>1</td>
</tr>
<tr>
<td>Inverse Frisch elasticity</td>
<td>(\eta)</td>
<td>2</td>
</tr>
<tr>
<td>Depreciation rate</td>
<td>(\delta)</td>
<td>0.03</td>
</tr>
<tr>
<td>Labor elasticity of output</td>
<td>(\nu)</td>
<td>0.65</td>
</tr>
</tbody>
</table>

(2) Estimate steady-state parameters using SMM:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Target</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment costs</td>
<td>(\xi)</td>
<td>(3.7 \times 10^{-4})</td>
<td>Investment inaction rate</td>
<td>0.263</td>
</tr>
<tr>
<td>Decreasing RTS</td>
<td>(\kappa)</td>
<td>0.744</td>
<td>Dividends / output</td>
<td>0.070</td>
</tr>
<tr>
<td>Persistence idio. prod.</td>
<td>(\rho_z)</td>
<td>0.311</td>
<td>SD sales growth</td>
<td>0.285</td>
</tr>
<tr>
<td>Avg SD idio. prod.</td>
<td>(\bar{\sigma}_z)</td>
<td>0.320</td>
<td>SD investment rates</td>
<td>0.154</td>
</tr>
</tbody>
</table>
(3) Estimate shock process parameters using **Bayesian methods**:

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Type</th>
<th>Prior</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autocorrelation, TFP shock</td>
<td>ρ^Z</td>
<td>Beta 0.600 0.260</td>
<td>0.983 0.015</td>
</tr>
<tr>
<td>Autocorrelation, discount shock</td>
<td>ρ^β</td>
<td>Beta 0.600 0.260</td>
<td>0.739 0.054</td>
</tr>
<tr>
<td>Autocorrelation, labor supply shock</td>
<td>ρ^ψ</td>
<td>Beta 0.600 0.260</td>
<td>0.986 0.006</td>
</tr>
<tr>
<td>Autocorrelation, uncertainty shock</td>
<td>ρ^σ</td>
<td>Beta 0.600 0.260</td>
<td>0.775 0.257</td>
</tr>
<tr>
<td>Standard deviation, TFP shock</td>
<td>σ^Z</td>
<td>Exp 0.100 0.100</td>
<td>0.012 0.001</td>
</tr>
<tr>
<td>Standard deviation, discount shock</td>
<td>σ^β</td>
<td>Exp 0.100 0.100</td>
<td>0.002 0.001</td>
</tr>
<tr>
<td>Standard deviation, labor supply shock</td>
<td>σ^ψ</td>
<td>Exp 0.100 0.100</td>
<td>0.012 0.001</td>
</tr>
<tr>
<td>Standard deviation, uncertainty shock</td>
<td>σ^σ</td>
<td>Exp 0.100 0.100</td>
<td>0.002 0.005</td>
</tr>
</tbody>
</table>

Posterior mode and SD are computed by drawing a sample of 10^6 points from the posterior distribution using the Metropolis-Hastings algorithm. We verify that Gelman's \sqrt{R} statistic is less than 1.05 for each parameter separately.
Results: FEVDs

A. Output

B. Consumption

C. Hours

A. SD sales growth
Results: shock decomposition

A. Output

B. Consumption

C. Labor

D. SD sales growth

-0.04
-0.02
0
0.02
0.04

-0.03
-0.02
-0.01
0
0.01
0.02
0.03

-0.1
-0.05
0
0.05

-0.03
-0.02
-0.01
0
0.01
0.02
0.03
Uncertainty-driven business cycles

- Compute uncertainty shock series that matches output fluctuations.
- Counterfactual implications for SD sales growth:

![SD sales growth graph]

- Model
- Data
Conclusion

- **Contribution**
 - We build a macro model consistent with micro evidence on dispersion.
 - We estimate the model on time series of aggregates and cross-sectional dispersion.

- **Findings**
 - Macro shocks alone not sufficient to explain fluctuations in dispersion.
 - Uncertainty shocks alone not sufficient to explain fluctuations in aggregates.

- **Future work**
 - Bayesian estimation of full parameter vector.
 - Computational speed is a barrier.
 - More comprehensive data.
 - A better model?
1. **Firm dispersion and uncertainty**

2. **Estimated macro models**

3. **Heterogeneous agent macro models**

4. **Linearizing heterogeneous agent models**
Sales growth interquartile range

IQR sales growth

Median sales growth
Sales growth dispersion by industry

IQR sales growth

- Mining & Construction
- Manufacturing (A)
- Manufacturing (B)
- Services

Year:
- 1990
- 1995
- 2000
- 2005
- 2010
- 2015