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This lecture
Deriving the Euler equation - PS4
Existence and uniqueness of value function
Solving for the value function

PS4 - Examples of writing out Bellman equations, solving for Euler equation
Next:

L8 Adding labor supply to the neoclassical model
L9 RBC model

L10 Asset pricing (Lucas, 1972)



Bellman equation
¢ Bellman equation - Writing E[f(2')|2] = 3,/ 7. (2'[2) f (')
V(z,2) = max F(z,2',2) + BE[V (', 2)|2]
subject to the constraint

' €T(x,z)



Bellman equation
® Bellman equation - Writing E[f(2")|2] = >_., m.(2'[2) f(2')
V(z,z) = max F(z,2',2) + BE[V (2, 2")|2]
subject to the constraint
' €T(x,z)
1. First order condition - Differentiate the Bellman equation for z’

Fy(a,a',2) + BE[Vi(a/, #)|2] = 0



Bellman equation

Bellman equation - Writing E[f(2")|2] = >_,, m.(2'|2) f(2)

V(z,z) = max F(z,2',2) + BE[V (2, 2")|2]
subject to the constraint

' €T(x,z)
. First order condition - Differentiate the Bellman equation for z’
Fy(x, o', 2) + BE [Vi(2',2")|2] = 0
. Envelope condition - Differentiate the Bellman equation for x

V1($,Z) = Fl(ZL',JZ/,Z)



Bellman equation
Bellman equation - Writing E[f(2")|2] = >_,, m.(2'|2) f(2)
V(z,z) = max F(z,2',2) + BE[V (2, 2")|2]
subject to the constraint
' €T(x,z)
. First order condition - Differentiate the Bellman equation for z’
Fy(x, o', 2) + BE [Vi(2',2")|2] = 0
. Envelope condition - Differentiate the Bellman equation for x
Vi(z,2) = Fi(z, 2, 2)
Combined — Euler equation

Fy(x, o', 2) = BE[Fy (2, 2", 2")]z] — 2'(w,2)



Example - Neoclassical model
® Bellman equation - (z,2’,2) = (k, k', a)
V(k,a) = max u(af(k) +(1— &)k — k) +BEV (K, d')|d]
subject to the constraint

k€ [0,af(k)+ (1 — 6)k]



Example - Neoclassical model
® Bellman equation - (z,2’,2) = (k, k', a)
V(k,a) = max u(af(k) +(1— &)k — k) +BEV (K, d')|d]
subject to the constraint
K € [0,af(k) + (1 —&)k]
1. First order condition

—u'(c) + BEVA(K', a)|a] =0



Example - Neoclassical model
Bellman equation - (z,2’,z) — (k, k', a)
V(k,a) = max u(af(k) +(1— &)k — k) +BEV (K, d')|d]
subject to the constraint

k€ [0,af(k)+ (1 — 6)k]

. First order condition

—u'(c) + BE[V1(K', d')|a] = 0
. Envelope condition

Vi(k,a) = u'(c) [af' (k) + (1 - 9)]



Example - Neoclassical model
Bellman equation - (z,2’,z) — (k, k', a)
V(k,a) = max u(af(k) +(1— &)k — k) +BEV (K, d')|d]
subject to the constraint

k€ [0,af(k)+ (1 — 6)k]

. First order condition

—u/(c) + BE[Vi (K, d')a] = 0
. Envelope condition
Vi(k,a) = u'(c) [af'(k) + (1 — 6]
Combined — Euler equation
W'(c) = BE[/ () [d'f'(K') + (1 = 0)][a] —  K'(k.a)
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Example - Cake eating w stochastic R
Bellman equation
V(W, R) = max u(RW — W') + BE [V (W', R')|R]
subject to the constraint

W’ e [0, RW]

. First order condition

—u/(c) + BE[Vw (W', R")|R] =0
. Envelope condition
Viv(W, R) = Ru/(c)
Combined — Euler equation
u'(c) = BE[RW ()R] — W'(W.R)
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What about the value function?

This still doesn’t solve our problems, we keep on differentiating V' (z, z) but ...
- Does the value function V' (z, z) exist?

- Is the value function unique?
- Is the value function differentiable?

- How do we compute the value function?
Luckily for us, all of these questions are interrelated!

Constructive proof of existence and uniqueness of V(x, z) provides a recipe for how to
compute it

Stokey, Lucas and Prescott (1989) - “Recursive Methods in Economic Dynamics”
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Fixed point
Recall the Solow model with 7 : Ry — R
knt1 =T (kn) == (1 —8)kn + sf(kn)
Steady state was a fized point k such that
k* =T(k")
Suppose we start off at some arbitrary kg > 0 then
ki =T (ko)
ko =T (k1) = T?(ko)
Found that
lim |kn — kp—1| = lim [T"(ko) — T" " (ko)| =0
n—oo n—oo

Then
lim T" (ko) = k*

n—oo
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Fixed point
Imagine we had 7 : Functions — Functions

Vo1 =T (V) = max F(x,2',2) + BE [Vn(x', z’)|z]

Value function is a fized point V* such that

V=T
Suppose we start off at some arbitrary Vj then
Vi=TMW)

Vo=T(V1) =T (Vo)
And it was true that

lim |V, = Vo || = lim [[T7(Ve) = T (V)| | = 0
Then

lim T"(Vp) =V*

n—oo
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Contraction mapping theorem - Part I

® Let 7 map bounded functions to bounded functions
T:B(X)—»B(X) , feB(X) , f:X—=>R

o [f T satisfies Blackwell’s sufficient conditions:

1. Monotonicity
Let f,g € B(X) such that f(x) > g(x), then

Tf(x) > Ty(x)

2. Discounting
There exists some 8 € (0,1) such that

T(f+a)(z) <Tf(z)+ Ba
® Then 7T is a Contraction Mapping

sup |T f(z) — Tg(x)| < Bsup |f(z) — g(z)]
rzeX zeX
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Contraction mapping theorem - Part I

® Let 7 map bounded functions to bounded functions
T:B(X)—»B(X) , VeBX) , V:X—->R
® Suppose that T satisfies Blackwell’s sufficient conditions:
1. Monotonicity - Let V(z,y) < V'(z,y) for all (z,y) € X
max F(z, 2", y) + BE[V (2", y)] < max F(x,2',y) + BE[V' (2, y)]
2. Discounting
TV +a)z,y) =TV(x,y) + Pa
® Then T is a Contraction Mapping

sup [TV (z,y) = TV'(z,y)| < B sup |V(z,y) —V'(z,y)]
(z,y)eX (z,y)eX
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Contraction mapping theorem - Part II
e If 7:B(X)— B(X) is a contraction mapping with modulus j:

1. 7 has a unique fixed point V* € B(X) such that TV* = V*
2. For any V € B(X),

sup |T"Vo(z,y) —V*(x,y)| < B" sup |Vo(z,y) — V*(z,y)
(z,y)eX (z,y)eX

forn=0,1,2,...
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Contraction mapping theorem - Part II
If T:B(X)— B(X) is a contraction mapping with modulus £:

. 7 has a unique fixed point V* € B(X) such that TV* = V*
. For any V € B(X),

sup |T"Vo(z,y) —V*(x,y)| < B" sup |Vo(z,y) — V*(z,y)
(z,y)eX (z,y)eX

forn=0,1,2,...

Let S C B(X) be a closed set, then if 7(S) C S, then V* € S

- If 7 maps continuous fns to continuous fns then V* is continuous
- If 7 maps increasing fns to increasing fns then V* is increasing
- If 7 maps concave fns to concave fns then V* is concave
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Example - Neoclassical model

® Bellman equation

V (k) = max u(f(k) +(1—8)k — k:) + BV (k)

subject to the constraint

k' €10, f(k)+ (1 —0)k]

1. First order condition
—u/(c) + BVi(K)] =0

2. Envelope condition
V(k) =u'(c) [f' (k) + (1 = 9)]

® Combined — Euler equation
u(e)=plEf(K)+1-0)] — (k)

19



Example - Neoclassical model

® Bellman equation

V (k) = max u(f(k) +(1—8)k — k:) +BVK)

subject to the constraint
k' e [0, f(k) + (1 d)K]
- Value function is bounded

k= argm}‘?xf(k) — ok

u(f (k") + (1 = 0)k")

Vi0k >Ry , V(k)< V e B([0,k])
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Example - Neoclassical model
e Bellman equation
V(k) = max u( (k) + (1= 6)k = ') + BV (k)
subject to the constraint
e [0, f(k) + (1 — 6)]
- Monotonicity - Let V < V
V (k) n}gxu(f(k) + (1 =8k —FK)+BV(K)
u(f(k) + (1 =8k — ki (k) + BV (K)
u(f(k) + (1= 6)k = kir (k) + BV (K)
u(f(k) + (1= 6)k — ki (k) + BV (K)
maxu(f(k;) + (1 =0k —k)+BV(K)

V (k)

AN IA I

=
=
IA
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Example - Neoclassical model

® Bellman equation

va:mmz(ﬁm+41—®k—y)+ﬁqu

k’

subject to the constraint

K € [0, f(k) + (1 — 6)k]

- Discounting
TWVHa)k) = o pmax v+ =0k - W)+ BIV(K) + a]
- k/G[O’f?’“l)af(lftDk] u(f(k) + (1 = 8)k — k') + BV (K') + Ba
T(V+a)k) < V() +pa
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Example - Neoclassical model

Special case: u(c) =loge, f(k) =k~ =1
Guess an initial value function Vy (k') =0

Solve optimization problem

Vi(k) = max log (k”‘ — k’) LB %0

First order condition
E=0
Substitute back

Vi(k) = log(k®) = alogk
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Example - Neoclassical model
Special case: u(c) =loge, f(k) =k*, =1
With the updated value V3 (k') = alog K’

Solve optimization problem
Va(k) = max log (k“ - k’) + Balogk’

First order condition

1 1
—7ka_k/+ﬁa?=0 — k/:

Ba

kOé
1+ Ba

Substitute back

_ feY af o Ba a
Vl(k)—log<k: - 1+aﬂk >+ﬁa10g(1+ﬂak )

Vi(k) = a(1 + Ba)logk + log

+ aflog

1 Ba
1+ Ba 1+ Ba
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Example - Neoclassical model
Special case: u(c) =loge, f(k) =k~ 6=1
With the updated value Vi (k) = a(1 + Sa)logk + log ﬁ + aflog
Solve optimization problem

Va(k) = max log (ka . k’) +AVA(K)

First order condition

Ba+ (Ba)? oo

1 1 r
7_]{,—1-6&(1—1—6&)?:0 - k =17 fa+t (Ba)

T

Substitute back

Va(k) = a(1+ Ba + (8a)?) log k + flog - +16a +Ba’log 7 fo;a’a
1 2 ,8(1‘1‘ (/604)2
o8 T ot (e TP+ Bl log TG e
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Example - Neoclassical model

After n iterations
Vi (k) = a(l+af + (aB)?* +--- + (aB)") log k + Const.

CMT: [terating forward as n — oo we know that V, (k) — V (k)

V(k) = T —aaﬁ log k + Const.

Now can solve for the policy function

«
1—ap

V(k) = max log (/fa - k/) +p log k' + 8 Const.

First order condition
1 af 1

_ _ / _ e ) — o fe
oW T1_apk = eBt k) = (- af)k

Recognize the solution: log ki1 —logk = a [log ks — log k| — kg1 = oky
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Computational receipe - ‘Algorithm’
Algorithm
® Guess Vj
Solve for k'(k) given Vp
Compute V;
Check if max|V; — V| < e
If so, done.
If not, update VH =V

Example

e Set up a grid for k € {0,ky,...,ky} where ky = 3.5 x k

Restrict choices of k" to lie on the grid

Starting guess Vp(k) = 0

Solve for V (k) and k'(k)

Compare solution to the approximate linear solution that we found using our earlier
approach: k' = k.
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Value function and policy function

B. Capital policy function: &, (k)

A. Value function: V,,(k) 1

f
|
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6
Capital k& Capital k
= max u(c)+ BV,—1(k — K (k
e (e) + BV (k) 1 (h)

28

0.8



2. Dynamics - Local dynamics

A. Capital policy function: k'(k;) B. Consumption policy function c(k;)

0.4 0.3
0.35
0.25 - 1
0.3
S 02+ 1
2025 g
= el
E 02 Z015¢ 1
B El
& I
0.15 =]
© S 01
0.1 : 0 o - 0 -
« Linearized solution —— Linearized solution
0.05 —o—Non-linear (Bellman) solution 0.05y —o—Non-linear (Bellman) solution
=)¢=Steady state X Steady state
0 0
0.1 0.2 0.3 0.4 0 0.2 0.4 0.6 0.8
Capital k; Capital k;
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Homework - Cake eating

An individual has a cake of size x. Each period they choose how much of the cake to
consume. Any cake that is not consumed grows at rate R > 1 between periods. The
individual has utility function u(c) = log ¢ and discounts the future at rate g < 1.

Write down the sequence problem
Write down the Bellman equation V(s) where s is the state vector
Use the FOC(s) and envelope condition to derive the Euler equation

Using a starting guess of V(s) = 0, solve for the optimal policy and use this to iterate
backward to Vi (s) and Va(s)

Use this to establish an expression for V,(s)
Show that V satisfies the sufficient conditions such that 7V is a contraction (write out T).
What can we then say about lim, . V,,(s)?

Use this to derive the policy function W’ (s)
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END
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