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This lecture

• Imbed government in neo-classical model

- Government budget constraint - Taxes, spending, borrowing

- Term structure of interest rates - Treasury yield curve

- Theory - Long run capital taxation

- Theory - Ricardian equivalence

- Dynamic response to government expenditure and taxes

- (i) Permanent and temporary ∆G, (ii) Unexpected and anticpated

• Next: Stochastic productivity - RBC model

• PS5 - (i) Responses to different taxes, (ii) Deficit financed corporate tax cut
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Government budget constraint

• Government - Finances some exogenous stream of spending {Gt}∞t=0 E.g. Qt = 0.99

Gt + Bt︸︷︷︸
Debt payments

= QtBt+1︸ ︷︷ ︸
Debt issuance

+ τKt RtKT + τCt Ct + τTt︸ ︷︷ ︸
Taxes

(∗)

• Household∗ - Now pays consumption expenditure tax, capital income tax, lump sum tax:

(1 + τCt )Ct +QtBt+1 +Kt+1 = WtNt + (1− τKt )RtKt +Bt + (1− δ)Kt − τTt (∗∗)

• Check - When aggregating we obtain the resource constraint. Add (∗) and (∗∗):

Ct +
{
Kt+1 − (1− δ)Kt

}
+Gt =

{
WtNt +RtKt

}
Ct + It +Gt = Yt

∗ Already setting profits Πt = 0 due to CRS F (Kt, Nt) and competitive factor demand.
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Problem - Household

Taking prices {Wt, Rt, Qt}∞t=0 and taxes {τKt , τCt , τTt }∞t=0 as given—chooses sequences of
{Ct,Kt+1}∞t=0 to maximize

∞∑
t=0

βtu(Ct/N)

subject to the series of constraints

(1 + τCt )Ct +QtBt+1 +Kt+1 ≤WtN + (1− τKt )RtKt +Bt + (1− δ)Kt − τTt

and initial conditions

K0 > 0
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Problem - Household
• First order necessary conditions

Kt+1 : 0 = −λt + λt+1

[
(1− τKt )Rt + (1− δ)

]
Bt+1 : 0 = −λtQt + λt+1

Ct : 0 = βtu′(Ct)− λt(1 + τCt )

• Euler equation
u′(Ct)

1 + τCt
= β

u′(Ct+1)

1 + τCt+1

[
(1− τKt )Rt + (1− δ)

]
Qt = β

u′(Ct+1)/(1 + τCt+1)

u′(Ct)/(1 + τCt )

• Transversality condition

lim
T→∞

βTu′(Ct)/(1 + τCT )KT+1 = 0
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Term structure of interest rates
• Definition - The rate of return on a one-period government bond?

rt =
Payment tomorrow− Price today

Price today
=

$1.00− $0.95

$0.95
=

1−Qt
Qt

• Rearrange to reveal the equilibrium household discount factor Assume τCt = 0

Qt =
1

1 + rt
→ 1

1 + rt
=
βu′(Ct+1)

u′(Ct)

• What is the rate of return on a T -period government bond?

Bt+T : 0 = −λtQt,T + λt+T

• Then

Qt,T =
λt+T
λt

=
λt+T
λt+T−1

. . .
λt+1

λt
=
βu′(Ct+1)

u′(Ct)
. . .

βu′(Ct+T )

u′(Ct+T−1)
=

T∏
s=0

Qt+s

Qt,T =
1

1 + rt,t+T
=

1∏T
s=0(1 + rs)

=
βTu′(CT )

u′(Ct)
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Term structure of interest rates

Qt,T =

T∏
s=0

Qt+s → 1

1 + rt,t+T
=

1∏T
s=0(1 + rs)

=
βTu′(CT )

u′(Ct)

• Yields - What fixed interest rate yt,T on a T -period government bond would yield the
same price?

(1 + yt,T )T =

T∏
s=0

(1 + rs)

• Suppose consumption was forecast to fall in period T

↑ Qt,T =
1

(1 + ↓ yt,T )T
=
βT ↑ u′(CT )

u′(Ct)

• Demand assets that pay off in period T ! Higher price, lower return.
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Distortionary vs. Non-distortionary taxes

• Given that Gt has to be financed anyway ...

• Question 1 - Under what sets of taxes do the optimality conditions of the household
coincide with the economy without taxes?

• Full set of equilibrium conditions

u′(Ct)

u′(Ct+1)
= β

1 + τCt
1 + τCt+1

[
(1− τKt )Rt + (1− δ)

]
Yt = Ct + It +Gt

It = Kt+1 − (1− δ)Kt

Rt = FK(Kt, N)

Wt = FN (Kt, N)

0 = lim
T→∞

βTu′(Ct)/(1 + τCT )KT+1
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Result 1 - Lump-sum τTt are non-distortionary

• Full set of equilibrium conditions

u′(Ct)

u′(Ct+1)
= β [Rt + (1− δ)]

Yt = Ct + It +Gt

It = Kt+1 − (1− δ)Kt

Rt = FK(Kt, N)

Wt = FN (Kt, N)

0 = lim
T→∞

βTu′(Ct)KT+1

• Do not see τTt !
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Result 2 - Constant τC is non-distortionary
• Full set of equilibrium conditions

u′(Ct)

u′(Ct+1)
= β

1 + τC

1 + τC
[Rt + (1− δ)]

Yt = Ct + It +Gt

It = Kt+1 − (1− δ)Kt

Rt = FK(Kt, N)

Wt = FN (Kt, N)

0 = lim
T→∞

βTu′(Ct)/(1 + τC)KT+1

• A constant consumption tax does not distort the economy away from the equilibrium
without government apart from resource constraint
• Marginal savings decision unaffected since consumption taxed at same rate in all

periods leaving the equilibrium rate of return unaffected

• With inelastic labor supply labor taxes also non-distortionary
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Result 3 - Constant τK is distortionary
• Full set of equilibrium conditions

u′(Ct)

u′(Ct+1)
= β

[
(1− τK)Rt + (1− δ)

]
Yt = Ct + It +Gt

It = Kt+1 − (1− δ)Kt

0 = lim
T→∞

βTu′(Ct)KT+1

• Reduces the return on savings
• Reduces equilibrium capital stock

Identical to an increasing tax on consumption

1 + τCt+1

1 + τCt
=

1

1− τK
∈ (0, 1)
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Result 3 - Constant τK is distortionary
• Full set of equilibrium conditions

u′(Ct)

u′(Ct+1)
= β

[
(1− τK)Rt + (1− δ)

]
u′(Ct)

u′(Ct+1)
= β

1 + τCt
1 + τCt+1

[Rt + (1− δ)]

• Reduces the return on savings

• Reduces equilibrium capital stock

• Equivalent to an increasing tax on consumption{
1

1− τK

}
=

{
1 + τCt+1

1 + τCt

}
> 1
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Ricardean equivalence

• We now understand which taxes distort the path of capital and consumption in the
economy

• Suppose the government understands this and so only uses lump-sum taxes

Gt +Bt = QtBt+1+τ
T
t

• Question 2: Does the way Gt is financed affect the economy?

• Consider a government that has to increase government spending for one period

Gt = G for all t 6= T and in period T GT = G′ > G

• Many ways to finance this! Two obvious, and topical, ones:

1. Deficit financed Issue debt in period T , raise taxes in the future: BT = GT

2. Tax financed Raise taxes at date T to pay for the spending: τTT = GT
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Ricardean equivalence
• Household budget constraint - Equilibrium returns equalized, so combine Kt and Bt into savings St

Ct + St+1 =
(

1 + r̃t

)
St +WtNt − τTt

• Iterate forward by recursively substituting for St+1, to get lifetime budget constraint
∞∑
t=0

Ct∏t
s=0(1 + r̃s)

=

∞∑
t=0

WtNt∏t
s=0(1 + r̃s)

−
∞∑
t=0

τTt∏t
s=0(1 + r̃s)

• Result 1 - Household only cares about the present discounted value of taxes

- Timing of taxes does not affect the household’s decision

• Implication - Household does not care about the composition of St

- In equilibrium both have the same effective interest rate r̃t

- Household does not treat Bt+1 differently to Kt+1

- Government debt doesn’t crowd out public savings.

St same if Bt > 0 or Bt = 0 (!!!)
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Ricardean equivalence

• Government budget constraint

Gt + (1 + rt)Bt = Bt+1 + τTt

• Iterate forward by recursively substituting for Bt+1, to get lifetime budget constraint

∞∑
t=0

Gt∏t
s=0(1 + rs)

=

∞∑
t=0

τTt∏t
s=0(1 + rs)

, lim
T→∞

Bt+T∏T
s=0(1 + rs)

= 0

• Result 2 - Present discounted value of taxes must equal PDV of government
expenditure

• Combine 1 & 2 - Households are only affected by the PDV of government
expenditure. How it is financed is irrelevant! This is Ricardean equivalence
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Ricardean equivalence - Assumptions
Consider a policy of a tax-cut today τt < 0, followed by a tax-increase in the future
τT > 0, with G = 0 for all t. Household saves and pays back in future.

1. Credit markets - Credit markets are perfect

- Ricardean household saves today and pays back later.
- A constrained household might consume some now and pay back through later income

2. Information - Household will be alive when/understands that future tax increase

- Ignoring future tax increases would lead to increased spending

3. Symmetry - Households all experience the tax-cut in the same way

- Tax cuts can redistribute wealth when wealth is held unequally. Maybe not so important
for aggregate outcomes. But maybe we care about the distribution?

4. Non-distorting tax - Taxes are lump sum

- In reality taxes are distorting. In response to a labor tax cut our Ricardean household
will work more today and work less tomorrow.
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Dynamics

• Ricardean equivalence makes our life easy, we only have to consider the dynamics of gt
to solve the household’s path of consumption and savings

• Let’s start with the economy in steady state with some initial g

1 = β[f ′(k̄) + (1− δ)] = β(1 + r̃(k̄))

c̄ = f(k̄)− δk̄ − g
• Consider four different changes in government spending g′ > g

1. Changes at date 0. Unexpected ‘shocks’

- Permanent increase in g from period T0 onwards
- Transitory increase in g from period T0 to T1

2. Increases at date T0, but anticipated from date 0

- Permanent increase in g from period T0 onwards
- Transitory increase in g from period T0 to T1
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Dynamics - ↑ g - Unexpected - Permanent

↓ c0, no change in the interest rate.
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Dynamics - ↑ g - Anticipated - Permanent

Fall in interest rate ↓ R1, household cuts consumption. Interest rate decrease
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Dynamics - ↑ g - Unexpected - Transitory

Increase in R1, so ↓ c0, ↑ c1. Interest rate increase
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Dynamics - ↑ g - Anticipated - Transitory

↓ c0 and accumulate capital to smooth effect on consumption.
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Dynamics - Anticipated transitory increase

- Try yourself! I’ll put up solution in slides next week

- Use what we have discussed here

- What is steady state capital and consumption be in the long run?

- What must happen to consumption on impact?

- Where must the economy be when G′ drops back down to G?

- What’s the relative rate of change in the economy along the path?

- In all cases give an intuitive explanation of the dynamics in terms of the equilibrium
behaviour of households in the economy and how they are responding to prices
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