Labor Market Power, Tax Progressivity and Inequality

David Berger Duke University, NBER

Kyle Herkenhoff University of Minnesota, NBER

Simon Mongey University of Chicago, Federal Reserve Bank of Minneapolis, NBER

Adam Oppenheimer

University of Minnesota

Minneapolis Fed - 2023

The views expressed herein are those of the authors and not those of the Federal Reserve System.

Question 1

- How does income tax policy and market power in labor markets interact?

Question 2

- What is the effect of changes in market structure on wage, consumption inequality?

Question 3

- How do shocks to firms pass-through to consumption across the wealth / income distribution?

Question 1

- How does income tax policy and market power in labor markets interact?

Question 2

- What is the effect of changes in market structure on wage, consumption inequality?

Question 3

- How do shocks to firms pass-through to consumption across the wealth / income distribution?

Necessary features

- Rich firm heterogeneity, concentrated markets, imperfect competition (BHM, 2022)
- * Rich household heterogeneity, consumption, savings, labor supply (e.g. HSV, 2020)

- Household

$$\begin{array}{ll} \max_{C,\{n_j\}} & \log\left(C - \frac{\mathcal{N}^{1+1/\varphi}}{1+1/\varphi}\right) &, \quad \mathcal{N} = \left[\int n_j^{\frac{\eta+1}{\eta}} dj\right]^{\frac{\eta}{\eta+1}} \\ \text{subject to} & C = \sum_j \left(1 - \tau_0\right) \left(w_j n_j\right)^{1-\tau_1} + \Pi \end{array}$$

- Household

$$\begin{array}{ll} \max_{C,\{n_j\}} & \log\left(C - \frac{\mathcal{N}^{1+1/\varphi}}{1+1/\varphi}\right) &, \quad \mathcal{N} = \left[\int n_j^{\frac{\eta+1}{\eta}} dj\right]^{\frac{\eta}{\eta+1}} \\ \text{subject to} & C = \sum_j \left(1 - \tau_0\right) \left(w_j n_j\right)^{1-\tau_1} + \Pi \end{array}$$

- Firm

$$y_j = Z n_j$$
 , $n_j = \left(rac{w_j}{\mathcal{W}}
ight)^{arepsilon} \mathcal{N}$, $w_j = rac{arepsilon}{arepsilon+1} Z$, $arepsilon = rac{(1- au_1)\,\eta}{1+ au_1\eta}$

- Household

$$\begin{array}{ll} \max_{C,\{n_j\}} & \log\left(C - \frac{\mathcal{N}^{1+1/\varphi}}{1+1/\varphi}\right) &, \quad \mathcal{N} = \left[\int n_j^{\frac{\eta+1}{\eta}} dj\right]^{\frac{\eta}{\eta+1}} \\ \text{subject to} & C = \sum_j \left(1 - \tau_0\right) \left(w_j n_j\right)^{1-\tau_1} + \Pi \end{array}$$

- Firm

$$y_j = Z n_j$$
 , $n_j = \left(rac{w_j}{\mathcal{W}}
ight)^{arepsilon} \mathcal{N}$, $w_j = rac{arepsilon}{arepsilon+1} Z$, $arepsilon = rac{(1- au_1)\,\eta}{1+ au_1\eta}$

* Additional distortion of progressive taxes

$$\mu = \left(1 - \tau_{1}\right) \frac{\eta}{\eta + 1} \quad , \quad \mathbf{Y} = \underbrace{\left[\left(1 - \tau_{1}\right) \frac{\eta}{\eta + 1}\right]^{\frac{\varphi(1 - \tau_{1})}{1 + \varphi \tau_{1}}}}_{\text{Monopsony term}} \times \underbrace{\left[\left(1 - \tau_{0}\right)\left(1 - \tau_{1}\right) Z^{\frac{\varphi+1}{\varphi}}\right]^{\frac{\varphi}{1 + \varphi \tau_{1}}}}_{\text{Competitive distortion, } W = Z}$$

- Household

$$\begin{array}{ll} \max_{C,\{n_j\}} & \log\left(C - \frac{\mathcal{N}^{1+1/\varphi}}{1+1/\varphi}\right) &, \quad \mathcal{N} = \left[\int n_j^{\frac{\eta+1}{\eta}} dj\right]^{\frac{\eta}{\eta+1}} \\ \text{subject to} & C = \sum_j \left(1 - \tau_0\right) \left(w_j\right)^{1-\tau_1} n_j + \Pi \end{array}$$

- Firm

$$y_j = Z n_j$$
 , $n_j = \left(rac{w_j}{\mathcal{W}}
ight)^{arepsilon} \mathcal{N}$, $w_j = rac{arepsilon}{arepsilon+1} Z$, $arepsilon = \left(1- au_1
ight)\eta$

* Additional distortion of progressive taxes

$$\mu = \frac{\left(1 - \tau_{1}\right)\eta}{\left(1 - \tau_{1}\right)\eta + 1} \quad , \quad \mathbf{Y} = \underbrace{\left[\frac{\left(1 - \tau\right)\eta}{\left(1 - \tau\right)\eta + 1}\right]^{\varphi(1 - \tau)}}_{\text{Monopsony term}} \times \underbrace{\left[\left(1 - \tau_{0}\right)^{\varphi} Z^{1 + \varphi(1 - \tau_{1})}\right]}_{\text{Competitive distortion, } W = Z}$$

Environment - Study a stationary general equilibrium economy in which ...

- Heterogeneous households consume, save, choose (i) firm to work at, (ii) hours to work
- Heterogeneous firms strategically set wages facing dist. of household labor supply

Tax progressivity

- More progressive taxes make labor supply more inelastic
- In imperfectly competitive labor markets, firms internalize these effects

Positive

- Match joint distribution of marginal propensities to consume and earn, by income

Golosov, Graber, Mogstad, Novgorodsky (2021) - How Americans Respond to Idiosyncratic and Exogenous Changes in Household Wealth and Unearned Income

Literature

1. Theory

- <u>Incomplete markets</u> + <u>Intensive margin supply</u> + <u>Extensive margin supply</u> + <u>Oligopsony</u> Bewley (1977) Macurdy (1981) Card et al (2020) BHM (2022)
- Characterize (i) Supply elasticities, (ii) Sorting, (iii) Pass-through

2. Numerical example

- Simple case Homogeneous firms, no strategic interaction
- Result Optimal progressivity increases inequality, but increases output

▶ Literature

Environment

Firms - Labor markets $m \in \{1, ..., M\}$. Firm $j \in \{1, ..., J_m\}$. Productivity $z_{jm} \sim \Gamma_z(z)$

$$y_{jmt} = z_{jm} n_{jmt}^{\alpha}$$

Firms - Labor markets $m \in \{1, ..., M\}$. Firm $j \in \{1, ..., J_m\}$. Productivity $z_{jm} \sim \Gamma_z(z)$

$$y_{jmt} = z_{jm} n^{\alpha}_{jmt}$$

Households - Continuum of workers $i \in [0, 1]$

- Stochastic productivity e_i : $e_{it+1} \sim \Gamma_e(e|e_{it})$
- Each period decide market and firm to work at

$$\mathbb{E}_{0}\left[\sum_{t=0}^{\infty}\beta^{t}u_{ijmt}\right], \ u_{ijmt} = \underbrace{\frac{c_{ijmt}^{1-\sigma}}{1-\sigma}}_{\text{Consumption}} - \underbrace{\frac{1}{\overline{\varphi}^{1/\varphi}}\frac{h_{ijmt}^{1+1/\varphi}}{1+1/\varphi} + \zeta_{ijmt}}_{\text{Labor supply}}, \ \underbrace{\zeta_{ijmt} \sim \Gamma_{\zeta}(\zeta)}_{\text{iid each period}}$$

- Save in government debt, interest rate *r*, borrowing constraint $a_{it+1} \ge \underline{a}$.

Environment - Preferences - Nested Gumbel

$$\Gamma_{\zeta}(\zeta) = \prod_{m \in \mathcal{M}} \exp\left\{-\left(\sum_{j \in m} e^{-\eta\zeta_{jm}}\right)^{\theta/\eta}\right\} \underbrace{\Gamma_{\zeta}(\zeta) = \prod_{m \in \mathcal{M}} \prod_{j \in m} \exp\left\{-e^{-\eta\zeta_{jm}}\right\}}_{\text{if } \theta = \eta}$$
A. High η , Low θ
B. Higher θ
C. Higher η

$$\overbrace{\zeta_{ijm}}_{Minneapolis}$$
New York

1. Choice over employers j and markets m, given wages w_{jm}

$$\widetilde{V}(a, e) := \mathbb{E}_{\zeta}\left[\max_{j,m}\left\{V(a, e, w_{jm}) + \zeta_{jm}\right\}\right]$$

1. Choice over employers j and markets m, given wages w_{jm}

$$\widetilde{V}(a, e) := \mathbb{E}_{\zeta}\left[\max_{j,m}\left\{V(a, e, w_{jm}) + \zeta_{jm}\right\}\right]$$

2. Consumption, savings, hours decision, given, w, r, Π

$$V(a, e, w) = \max_{a', c, h} u(c, h) + \beta \int \widetilde{V}(a', e') d\Gamma_e(e'|e)$$
$$c + a' = (1 - \tau_0) (whe)^{1 - \tau_1} + (1 + r)a + \Pi$$
$$a' \geq \underline{a}$$

Monotonicity, Discounting

1. Choice over employers j and markets m, given wages w_{jm}

$$\widetilde{V}(a, e) = \frac{1}{\theta} \log \left[\sum_{m} e^{\theta \overline{V}(a, e, \mathbf{w}_{m})} \right]$$
$$\overline{V}(a, e, \mathbf{w}_{m}) = \frac{1}{\eta} \log \left[\sum_{j \in m} e^{\eta V(a, e, w_{jm})} \right]$$

2. Consumption, savings, hours decision, given, w, r, Π

$$V(a, e, w) = \max_{a', c, h} u(c, h) + \beta \int \widetilde{V}(a', e') d\Gamma_e(e'|e)$$
$$c + a' = (1 - \tau_0) (whe)^{1 - \tau_1} + (1 + r)a + \Pi$$
$$a' \geq \underline{a}$$

Monotonicity, Discounting

1. Choice over employers j and markets m, given wages w_{jm}

$$\widetilde{V}(a, e) = \frac{1}{\theta} \log \left[\sum_{m} e^{\theta \overline{V}(a, e, \mathbf{w}_{m})} \right]$$
$$\overline{V}(a, e, \mathbf{w}_{m}) = \frac{1}{\eta} \log \left[\sum_{j \in m} e^{\eta V(a, e, w_{jm})} \right]$$

2. Consumption, savings, hours decision, given, w, r, Π

$$V(a, e, w) = \max_{a', c, h} u(c, h) + \beta \int \widetilde{V}(a', e') d\Gamma_e(e'|e)$$

$$c + a' = (1 - \tau_0) (whe)^{1 - \tau_1} + (1 + r)a + \Pi \quad , \quad \frac{\partial V_{ijm}}{\partial \log w_{jm}} = \Lambda_{ijm} \widetilde{y}_{ijm} (1 - \tau_1)$$

$$a' \geq \underline{a}$$

Monotonicity, Discounting

Firm problem

Problem - Takes as given \mathbf{w}_{-jm} and *aggregates* and chooses wage w_{jm} to maximize profits

$$w_{jm}^* = rg\max_{w_{jm}} z_j n \Big(w_{jm}, \mathbf{w}_{-jm} \Big)^{lpha} - w_j n \Big(w_j, \mathbf{w}_{-jm} \Big)^{lpha}$$

Firm problem

Problem - Takes as given \mathbf{w}_{-im} and *aggregates* and chooses wage w_{im} to maximize profits

$$w_{jm}^* = \arg \max_{w_{jm}} z_j n \Big(w_{jm}, \mathbf{w}_{-jm} \Big)^{lpha} - w_j n \Big(w_j, \mathbf{w}_{-jm} \Big)^{lpha}$$

Supply - For a wage w_{jm} , equilibrium quantity of labor a firm receives is given by

$$n\left(w_{jm}, \mathbf{w}_{-jm}\right) = \int \rho\left(a, e, w_{jm}, \mathbf{w}_{-jm}\right) h\left(a, e, w_{jm}\right) e\lambda(a, e) d(a, e)$$

$$\rho\left(a, e, w_{jm}, \mathbf{w}_{-jm}\right) = \frac{e^{\eta V(a, e, w_{jm})}}{e^{\eta \overline{V}(a, e, \mathbf{w}_{m})}} \times \frac{e^{\theta \overline{V}(a, e, \mathbf{w}_{m})}}{e^{\theta \overline{V}(a, e)}}$$

$$\overline{V}\left(a, e, \mathbf{w}_{m}\right) = \frac{1}{\eta} \log \left[e^{\eta V(a, e, w_{jm})} + \sum_{k \neq j} e^{\eta V(a, e, w_{km})}\right]$$

Firm problem

Problem - Takes as given \mathbf{w}_{-jm} and *aggregates* and chooses wage w_{jm} to maximize profits

$$w_{jm}^{*} = rg\max_{w_{jm}} z_{j} n \Big(w_{jm}, \mathbf{w}_{-jm} \Big)^{lpha} - w_{j} n \Big(w_{j}, \mathbf{w}_{-jm} \Big)^{lpha}$$

Optimality / Nash - Standard markdown condition

$$w_{jm}^{*} = \underbrace{\frac{\varepsilon(w_{jm}, \mathbf{w}_{-jm}^{*})}{\varepsilon(w_{jm}, \mathbf{w}_{-jm}^{*}) + 1}}_{\text{Markdown}} \underbrace{\alpha z_{j} n(w_{jm}, \mathbf{w}_{-jm}^{*})^{\alpha - 1}}_{\text{Marginal product}} , \quad \varepsilon_{jm} := \frac{\partial \log n(w_{jm}, \mathbf{w}_{-jm})}{\partial \log w_{jm}} \bigg|_{\mathbf{w}_{-jm}^{*}}$$

Details - Second order conditions

Key objects for Question 3 - Welfare effects of shocks

Holding competitor's wages fixed, the effect of a productivity shock to z_{im} on ex-ante utility is:

$$d\widetilde{V}(a, e) = \rho\left(a, e, w_{jm}\right) \varepsilon_{\rho}\left(a, e, w_{jm}\right) \varphi\left(w_{j}\right) d \log z_{jm}$$

1. Sorting

$$\rho\left(\mathsf{a}, \mathsf{e}, \mathsf{w}_{jm}\right)$$

2. Across-firm elasticity

$$\varepsilon_{\rho}(a, e, w_{jm}) = \frac{\partial \log \rho(a, e, w_{jm})}{\partial \log w_{jm}}$$

3. Pass-through

$$\varphi\Big(w_j\Big) = \frac{\partial \log w_{jm}}{\partial \log z_{jm}}$$

1. Elasticity of labor supply - $\varepsilon(w_j)$

Firm labor supply elasticity

$$n(w_j) = \int \rho_i(w_j) h_i(w_j) e_i \, di$$

$$\varepsilon(w_j) = \int \underbrace{\frac{\rho_i(w_j) h_i(w_j) e_i \, di}{\int \rho_k(w_j) h_k(w_j) e_k \, dk}}_{\text{Share of labor of type } (a_i, e_i)} \times \left[\varepsilon_i^{\rho}(w_j) + \varepsilon_i^{h}(w_j) \right] di$$

Extensive margin elasticity

$$\varepsilon_i^{
ho}\Big(w_j\Big) = rac{\partial \log
ho_i(w_j)}{\partial \log w_j}$$

Intensive margin elasticity

$$\varepsilon_i^h(w_j) = \frac{\partial \log h_i(w_j)}{\partial \log w_j}$$

$$\begin{split} \rho_{i}(w_{j}) &= \frac{e^{\eta V_{i}(w_{j})}}{e^{\eta \widetilde{V}_{i}(\mathbf{w}_{m})}} \frac{e^{\theta \widetilde{V}_{i}(\mathbf{w}_{m})}}{\sum_{m} e^{\theta \widetilde{V}_{i}(\mathbf{w}_{m})}} \quad , \quad \widetilde{V}_{i}(\mathbf{w}_{m}) = \frac{1}{\eta} \log \left[\sum_{j \in m} e^{\eta V_{i}(w_{j})} \right] \\ \varepsilon_{i}^{\rho}(w_{j}) &= \frac{\partial \log \rho_{i}(w_{j})}{\partial \log V_{i}(w_{j})} \frac{\partial \log V_{i}(w_{j})}{\partial \log w_{j}} \end{split}$$

$$\rho_{i}(w_{j}) = \frac{e^{\eta V_{i}(w_{j})}}{e^{\eta \widetilde{V}_{i}(\mathbf{w}_{m})}} \frac{e^{\theta \widetilde{V}_{i}(\mathbf{w}_{m})}}{\sum_{m} e^{\theta \widetilde{V}_{i}(\mathbf{w}_{m})}} , \quad \widetilde{V}_{i}(\mathbf{w}_{m}) = \frac{1}{\eta} \log \left[\sum_{j \in m} e^{\eta V_{i}(w_{j})} \right]$$
$$\varepsilon_{i}^{\rho}(w_{j}) = \underbrace{\left(\eta \left(1 - \rho_{ij|m} \right) + \theta \rho_{ij|m} \right)}_{\text{Oligopsony}} \underbrace{V_{a,i}\left(w_{j}\right) \widetilde{Y}_{ij}}_{\text{Wealth}} \underbrace{\left(1 - \tau_{1} \right)}_{\text{Progressive tax}}$$

1. Preferences less dispersed $\uparrow \eta, \uparrow \theta$, <u>More elastic</u>

$$\rho_{i}(w_{j}) = \frac{e^{\eta V_{i}(w_{j})}}{e^{\eta \widetilde{V}_{i}(\mathbf{w}_{m})}} \frac{e^{\theta \widetilde{V}_{i}(\mathbf{w}_{m})}}{\sum_{m} e^{\theta \widetilde{V}_{i}(\mathbf{w}_{m})}} , \quad \widetilde{V}_{i}(\mathbf{w}_{m}) = \frac{1}{\eta} \log \left[\sum_{j \in m} e^{\eta V_{i}(w_{j})} \right]$$
$$\varepsilon_{i}^{\rho}(w_{j}) = \underbrace{\left(\eta \left(1 - \rho_{ij|m} \right) + \theta \rho_{ij|m} \right)}_{\text{Oligopsony}} \underbrace{V_{a,i}(w_{j}) \widetilde{Y}_{ij}}_{\text{Wealth}} \underbrace{\left(1 - \tau_{1} \right)}_{\text{Progressive tax}}$$

- 1. Preferences less dispersed $\uparrow \eta, \uparrow \theta$, <u>More elastic</u>
- 2. Larger firm in the market $\uparrow \rho_{ij|m}$, Less elastic (BHM, 2022)

$$\rho_{i}(w_{j}) = \frac{e^{\eta V_{i}(w_{j})}}{e^{\eta \widetilde{V}_{i}(\mathbf{w}_{m})}} \frac{e^{\theta \widetilde{V}_{i}(\mathbf{w}_{m})}}{\sum_{m} e^{\theta \widetilde{V}_{i}(\mathbf{w}_{m})}} , \quad \widetilde{V}_{i}(\mathbf{w}_{m}) = \frac{1}{\eta} \log \left[\sum_{j \in m} e^{\eta V_{i}(w_{j})} \right]$$
$$\varepsilon_{i}^{\rho}(w_{j}) = \underbrace{\left(\eta \left(1 - \rho_{ij|m} \right) + \theta \rho_{ij|m} \right)}_{\text{Oligopsony}} \underbrace{V_{a,i}(w_{j}) \widetilde{y}_{ij}}_{\text{Wealth}} \underbrace{\left(1 - \tau_{1} \right)}_{\text{Progressive tax}}$$

- 1. Preferences less dispersed $\uparrow \eta, \uparrow \theta$, <u>More elastic</u>
- 2. Larger firm in the market $\uparrow \rho_{ij|m}$, Less elastic (BHM, 2022)
- 3. Poorer households $\uparrow V_a$, Higher marginal value of a dollar, <u>More elastic</u>

$$\rho_{i}(w_{j}) = \frac{e^{\eta V_{i}(w_{j})}}{e^{\eta \widetilde{V}_{i}(\mathbf{w}_{m})}} \frac{e^{\theta \widetilde{V}_{i}(\mathbf{w}_{m})}}{\sum_{m} e^{\theta \widetilde{V}_{i}(\mathbf{w}_{m})}} , \quad \widetilde{V}_{i}(\mathbf{w}_{m}) = \frac{1}{\eta} \log \left[\sum_{j \in m} e^{\eta V_{i}(w_{j})} \right]$$
$$\varepsilon_{i}^{\rho}(w_{j}) = \underbrace{\left(\eta \left(1 - \rho_{ij|m} \right) + \theta \rho_{ij|m} \right)}_{\text{Oligopsony}} \underbrace{V_{a,i}(w_{j}) \widetilde{y}_{ij}}_{\text{Wealth}} \underbrace{\left(1 - \tau_{1} \right)}_{\text{Progressive tax}}$$

- 1. Preferences less dispersed $\uparrow \eta, \uparrow \theta$, <u>More elastic</u>
- 2. Larger firm in the market $\uparrow \rho_{ij|m}$, Less elastic (BHM, 2022)
- 3. Poorer households $\uparrow V_a$, Higher marginal value of a dollar, <u>More elastic</u>
- 4. Higher earning $\uparrow \widetilde{y}_{ij}$, More at stake, More elastic

$$\rho_{i}(w_{j}) = \frac{e^{\eta V_{i}(w_{j})}}{e^{\eta \widetilde{V}_{i}(\mathbf{w}_{m})}} \frac{e^{\theta \widetilde{V}_{i}(\mathbf{w}_{m})}}{\sum_{m} e^{\theta \widetilde{V}_{i}(\mathbf{w}_{m})}} , \quad \widetilde{V}_{i}(\mathbf{w}_{m}) = \frac{1}{\eta} \log \left[\sum_{j \in m} e^{\eta V_{i}(w_{j})} \right]$$
$$\varepsilon_{i}^{\rho}(w_{j}) = \underbrace{\left(\eta \left(1 - \rho_{ij|m} \right) + \theta \rho_{ij|m} \right)}_{\text{Oligopsony}} \underbrace{V_{a,i}(w_{j}) \widetilde{y}_{ij}}_{\text{Wealth}} \underbrace{\left(1 - \tau_{1} \right)}_{\text{Progressive tax}}$$

- 1. Preferences less dispersed $\uparrow \eta, \uparrow \theta$, <u>More elastic</u>
- 2. Larger firm in the market $\uparrow \rho_{ij|m}$, Less elastic (BHM, 2022)
- 3. Poorer households $\uparrow V_a$, Higher marginal value of a dollar, <u>More elastic</u>
- 4. Higher earning $\uparrow \tilde{y}_{ij}$, More at stake, <u>More elastic</u>
- 5. Higher progressivity $\uparrow \tau_1$, Competitor's higher offer is taxed away, Less elastic

E.g. Berger, Herkenhoff, Mongey (2022)

$$\begin{aligned} \varepsilon_i^h(w_j) &= \frac{\partial \log h_i(w_j)}{\partial \log w_j} \\ \varepsilon_i^h(w_j) &= \frac{\left(1 - \sigma \frac{\partial \log c_i}{\partial \log \tilde{y}_i}\right) \left(1 - \tau_1\right)}{\left(1 + 1/\varphi\right) - \left(1 - \sigma \frac{\partial \log c_i}{\partial \log \tilde{y}_i}\right) \left(1 - \tau_1\right)} \quad , \quad \frac{\partial \log c_i}{\partial \log \tilde{y}_i} = \frac{\left\{\frac{dc_i}{db_i}\right\}}{\left\{\frac{c_i}{\tilde{y}_i}\right\}} = \frac{mpc_i}{apc_i} \end{aligned}$$

- Special case Static $(mpc_i = apc_i)$, Constant tax $(\tau_1 = 0) \Rightarrow \epsilon_h = \frac{1-\sigma}{1/\sigma+\sigma}$
- Progressivity More progressivity $\uparrow \tau_1$, Additional hour taxed more, Less elastic $\downarrow \varepsilon_h$
- MPC Get \$1, spend it, negative wealth effect. Higher if spend more. Less elastic $\downarrow \epsilon_h$

Proposition 1 - On both the extensive, and intensive margins, the <u>partial equilibrium</u> effect of higher tax progressivity is a lower labor supply elasticity

2. Sorting - $\rho(a, e, w_j)$

Proposition 2 - Higher productivity workers sort into higher wage firms

- Cross-elasticity of choice probability with respect to w_i and e_i , with $\tau_1 = 0$, and $J \rightarrow \infty$

$$\frac{\partial^2 \log \rho_{ij}}{\partial \log e_i \partial \log w_j} = \varepsilon^{\rho}_{ij} \Big(1 + \varphi \Big) \left(1 - \sigma \frac{\partial \log c_{ij}}{\partial \log e_{ij}} \right) > 0$$

- Inherits the sign of the cross-partial derivative of $V(a_i, e_i, w_j)$

$$\frac{\partial V_{ij}}{\partial \log w_j} = u'(c_{ij}) w_j e_i h_{ij}$$

- Since earnings are $\tilde{y}_{ij} = w_j e_i h_{ij}$, then w_j and e_i are complements
- Can do a quantitative version of Scheuer Werning (QJE, 2018)

2. Sorting - $\rho(a, e, w_j)$

Aside - Let's go back to the BHM economy, and add DRS $y_j = z_j n_j^{\alpha}$ and z_j heterog.

- Taxes

$$C = \sum_{j} \left(\lambda w_{j}^{1-\tau} \right) n_{j} + \Pi$$

- Aggregation - Suppose that firms behave competitively, so $w_j = mpl_j = \alpha z_j n_j^{\alpha-1}$:

$$N = \left(\lambda \widetilde{W}^{1-\tau}\right)^{\varphi} C^{-\varphi\sigma} , \quad N = \left[\sum_{j} n_{j}^{\frac{\eta+1}{\eta}}\right]^{\frac{\eta}{\eta+1}}$$
$$\widetilde{W} = \alpha Z N^{\alpha-1} , \quad \widetilde{W} = \left[\sum_{j} \widetilde{w}_{j}^{(\eta+1)(1-\tau)}\right]^{\frac{1}{(\eta+1)(1-\tau)}}$$
$$Y = Z N^{\alpha}$$
$$Z = \left[\sum_{j} \widetilde{z}_{j}^{\frac{(1+\eta)(1-\tau)}{1+\eta(1-\tau)(1-\alpha)}}\right]^{\frac{1+\eta(1-\tau)(1-\alpha)}{(1+\eta)(1-\tau)}}$$
$$G = \sum_{i} w_{j} n_{j} - \lambda \widetilde{W}^{1-\tau} N , \quad n_{j} = \left(\frac{w_{j}}{\widetilde{W}}\right)^{\eta(1-\tau)} N$$

3. Pass-through - $\varphi(w_j)$

Rich literature understanding *pass-through* of productivity to wages

- Why? In competitive markets, then 1:1
- Simplified: (i) No intensive margin labor supply $h_{ij} = \overline{h}$, (ii) Constant tax ($\tau_1 = 0$)

Pass-through and Super-elasticity of labor supply to the firm

- We would measure change in wage relative to output-per-worker E.g. KPWZ (QJE, 2018)

$$w_j = \alpha \mu_j (y_j / n_j)$$

$$\frac{\partial \log w_j}{\partial \log(y_j / n_j)} = \frac{[\varepsilon_j + 1]}{[\varepsilon_j + 1] - \mathcal{E}_j}$$

$$\mathcal{E}_j = \frac{\partial \log \varepsilon_j}{\partial \log w_i}$$

- BHM (2022) - Higher wage, Higher market share, Less elastic: $\mathcal{E}_j < 0, \ \varphi_j < 1$

3. Pass-through - $\varphi(w_j)$

Elasticity

$$\varepsilon_j = \int s_{ij} \varepsilon_{ij}^{\rho} di$$
 , $s_{ij} = \frac{\rho_{ij} e_i}{n_j}$, $\varepsilon_{ij}^{\rho} = \left(\rho_{ij} \theta + (1 - \rho_{ij})\eta\right) u'(c_{ij}) e_i w_j$

Super-elasticity

$$\frac{\partial \log \varepsilon_{j}}{\partial \log w_{j}} = \underbrace{- \left(\eta - \theta\right) w_{j} \mathbb{E}_{s\varepsilon} \left[\rho_{ij} u'\left(c_{ij}\right) e_{i}\right]}_{1. \text{ Market power}} \underbrace{+ 1 - \sigma \mathbb{E}_{s\varepsilon} \left[mpc_{ij} \times \left(\frac{w_{j}e_{i}}{c_{ij}}\right)\right]}_{2. \text{ Individual elasticity}} \underbrace{+ \frac{\mathbb{V}_{s}[\varepsilon_{ij}]}{\mathbb{E}_{s}[\varepsilon_{ij}]}}_{3. \text{ Composition}}$$

Proposition 3 - Pass-through is ambiguous

- (-) Raise wage, Raise market share, Lowers elasticity
- (-) Raise wage, Raise consumption, Lowers elasticity

(+) Raise wage, Workers you hire on the margin are more elastic, Raises elasticity

Consistent with recent empirical evidence on MPE's and MPC's

Golosov et al (2021) - Americans' Response to Idiosyncratic Changes in Unearned Income

- In the model, the marginal propensity to earn is dy_i / db_i

$$MPE_i = -rac{arphi\sigma}{1+arphi au_1} imesrac{MPC_i}{APC_i}$$

	All	Inc	Income group		
GGMN		Q1	Q2-Q3	Q4	
MPE	-0.52	-0.31	-0.55	-0.67	
MPC	0.58	0.73	0.54	0.50	

- Given $\sigma = 1.50$ and $\tau_1 = 0.186$ (HVS, 2020), average estimates imply $\varphi = 0.45$
- Fix r = 0.02 and calibrate β to match estimates of MPC_i
- Declining APC; with income, delivers higher MPE; with income

- Unified theory of consumption, savings, labor supply, labor market power
- Foregrounds interaction between wealth and labor supply elasticities
- Going forward
 - Calibration to heterogeneous markets
 - Compare implications for MPE's and MPC's to recent estimates
 - Additional counterfactuals E.g. mergers, minimum wages
- Plug Pricing Inequality with Mike Waugh

APPENDIX SLIDES